第69章 提前到来的毕业考试 (2/2)
这题也难不倒他,不到2秒,李默就推导出了答案:
u=u(x,y,z)?u/?x=[(x/y)^5261(1/z)]/(zx)=u/(zx)?u/?y=-[(x/y)^(1/z)]/(zy)=-u/(zy)?u/?z=-[(x/y)^(1/z)](1/z?)ln(x/y)=-u[ln(x/y)]/z?
u=(x/y)^(1/z)在(1,41021,1)1653u=u(1,1,1)=1
?u/?x=1,?u/?y=-1,?u/?z=0
3.求u=ln(sin(xy))的全微分
1秒,只用了1秒,李默直接写下了答案。
du=(?u/?x)dx+(?u/?y)dy
?u/?x=y[cos(xy)]/[sin(xy)]?u/?y=x[cos(xy)]/[sin(xy)]
du=(ydx+xdy)[cos(xy)]/[sin(xy)]
..........................
.........................
仅仅用时30分钟,李默就做完了《数学分析》的试卷,如果不是最后那道开放性题目,他用了6中方法阐述,还可以更快一点。
下一张试卷是《高等代数》。
1.设v1与v2分别是齐次方程组x1+x2+.....+xn=0及x1=x2=.....=xn的解空间,求v1,v2并证p^n=v1+v2,其中p^n为数域p上的n维向量空间。
答案:v1就是向量bai(1,1,...,1)的正交补空间,基为(1,-1,0,0,...,0),(du1,0,-zhi1,0,。。。,0),。。。,(1,0,。。。,-1),每个向量第dao一个分量为1,第k+1个分量为-1,其余分量为0,k=1,2,。。。,n-1。v2的基为(1,1,1,...,1)。容易看出,v1和v2是正交的(基向量之间是正交的),v1的维数是n-1,v2的维数是1,两者之和为n,因此两个子空间的和是直和,恰好是全空间。
1分钟,就完成了第一题。自从灵智升到了2级,他觉得自己可以很轻松的抓住解题思路。
旁边的周明看到李默已经完成了《数学分析》试卷,不由走到他身后,看了起来。只见眼前的稚嫩少年,做起题目像写文章一样,粉笔极速。
即使遇到狡计的题目,少年眉头微颦,稍加思索,就可以迎刃而解。
吴教授经常在自己面前夸耀数学系出了一位天才,本来周明还不相信。可以进入燕大数学系学习的哪个不是天才。
可现在看到眼前这个飞速做题的少年,周明才真正明白天才的意思。
《高等代数》试卷也很快的被李默完成了,周明下意识的看了一下自己的手机,只用了20分钟。
下一张试卷就是《微积分方程》,《微积分方程》是以计算量大著称的。不是那种有了解题思路就可以轻松解决的题目。
“这次看你需要多久?”周明这次特意看了一下自己的手机,现在是9点30分。
第一道题目,设a,b,c都是正常数,且y(x)是微分方程ay''+by'+cy=0的一个解,求证:
lis
n
x+c2
sin
nx|<=|c1|+|c2|有界
所以当x->正无穷y->0
综上lim(n->+∞)y(x)=0
好长啊,手好累,微积分方程的题目果然是以繁琐著称的。李默打起十二分精神。
第2道...第3道...第4道...
终于结束了,李默在试卷上写上最后一个数学符号。
周明又看了一下手机,9:55分,用时25分,眼前这位少年就完成了这套自己至少要2个小时才能完成的试卷。
“老师,我做完了,可以提前交卷子吗?”李默举着手问。
“做完了?”正在门口发呆的教务处老师有点惊讶,那可是3份试卷啊,本来安排在一个上午考完就已经有考验他的意思了。
没想到他竟然这么快就做完了。
教务处的老师走了过来,把他的试卷整理了一下装进了密封袋里。